วันพฤหัสบดีที่ 24 กรกฎาคม พ.ศ. 2557
วันพฤหัสบดีที่ 10 กรกฎาคม พ.ศ. 2557
ธรรมชาติของเสียง
เสียงเป็นคลื่นตามยาว แบบเดียวกับคลื่นในสปริง
เมื่อเสียงออกจากแหล่งกำเนิดถ่ายทอดพลังงานออกไปทำให้อนุภาคตัวกลางสั่นไปและกลับในแนวขนานกับทิศการเคลื่อนที่ของคลื่นเสียง
1. กำเนิดเสียง
ที่มา http://www.myfirstbrain.com/student_view.aspx?ID=70443
เสียงเกิดจากการสั่นของวัตถุที่เป็นต้นกำเนิดเสียง เช่นการดีดสายกีตาร์
พลังงานในการดีดซึ่งเป็นพลังงานกล จะถูกถ่ายโอนให้กับสายกีตาร์ ทำให้สายกีตาร์สั่น พลังงานในการสั่นของสายกีตาร์จะเปลี่ยนเป็นพลังงานเสียงแผ่กระจายออกไปโดยรอบ
ที่มา http://thegeniusphysics.blogspot.com/p/gfda.html
การแผ่กระจายพลังงานเสียงออกไป
ถูกส่งออกไปในลักษณะของคลื่นกล ซึ่งต้องอาศัยตัวกลางในการส่งผ่านพลังงาน
ตัวกลางที่คลื่นเสียงผ่านได้มีทั้ง ของแข็ง ของเหลว และก๊าซ
โดยตัวกลางที่เป็นของแข็งคลื่นเสียงผ่านได้ดีกว่าในของเหลว และ ก๊าซตามลำดับ
ความถี่ของเสียงจะเท่ากับความถี่การสั่นของอนุภาคตัวกลาง(แบบซิมเปิลฮาร์มอนิก)
และเท่ากับความถี่การสั่นของแหล่งกำเนิดเสียง
โดยความถี่ของเสียงที่แตกต่างกันจะทำให้ได้ยินเป็นเสียงแหลมและเสียงทุ้มต่างกัน
ดังนั้นเสียงดนตรีที่ไพเราะจึงเกิดจากการส่งเสียงออกไปด้วยความถี่เสียงที่แตกต่างกันอย่างมีลำดับที่สวยงามและสอดคล้องกันจากจินตนาการของนักประพันธ์เพลง
วีดีโอแสดงการกำเนิดเสียงจากการสั่นของสายกีตาร์
2. อัตราเร็วเสียง(Sound Speed)
- อัตราเร็วเสียงในของแข็ง ค่าอัตราเร็วเสียงขึ้นอยู่กับค่ามอดูลัสของยังก์
และความหนาแน่นของตัวกลาง ตามสมการ
- อัตราเร็วเสียงในของเหลว ค่าอัตราเร็วขึ้นอยู่กับค่ามอดูลัสตามปริมาตร
และค่าความหนาแน่นของตัวกลาง ตามสมการ
- อัตราเร็วเสียงในก๊าซ ค่าอัตราเร็วขึ้นอยู่กับอุณหภูมิของก๊าซ โดยเมื่ออุณหภูมิสูง อัตราเร็วเสียงจะมาก
3. สมการคำนวณการเดินทางของเสียง
ในตัวกลางเดิม เช่นในอากาศอุณหภูมิคงที่ คลื่นเสียงจะเดินทางด้วยอัตราเร็วคงตัว ดังนั้นเมื่อคำนวณการเดินทางของเสียงจึงใช้สมการ
วันอังคารที่ 8 กรกฎาคม พ.ศ. 2557
การได้ยิน ประโยชน์ของเสียง
1. การได้ยินเสียง
คลื่นเสียงเป็นสิ่งเร้า
เมื่อคลื่นเสียงผ่านเข้าสู่ช่องหูส่วนนอก (External
auditory canal) ไปสู่หูส่วนกลาง
(middle ear) ซึ่งมีเยื่อแก้วหู (lympanic
membrane) คลื่นเสียงทำให้อากาศสั่นสะเทือนส่งผลให้เยื่อแก้วหูสั่น
กระทบกับกระดูกหูรูปค้อน กระดูกรูปทั่งและกระดูกรูปโกลน
ทำให้เกิดการสั่นสะเทือนไปยังของเหลว Perilymph
และของเหลวEndolymph
ในหูส่วนใน
ซึ่งคลื่นของเหลวนี้จะไปกระตุ้นเซลล์รับเสียงส่งต่อไปยังประสาทรับเสียง (auditory nerve) ส่งไปยังศูนย์กลางรับเสียงในสมอง ซึ่งแปลความรู้สึกเป็นเสียงต่างๆ
ที่มา http://amfinewell.wordpress.com/2013/01/22/%E0%B9%80%E0%B8%AA%E0%B8%B5%E0%B8%A2%E0%B8%87%E0%B8%81%E0%B8%B1%E0%B8%9A%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%84%E0%B8%94%E0%B9%89%E0%B8%A2%E0%B8%B4%E0%B8%99-3/
จากการศึกษาที่ผ่านมาทำให้เราทราบว่า
การได้ยินเสียงของมุษย์ต้องขึ้นกับระดับความเข้มเสียง และความถี่เสียง ( 20 - 20,000 Hz )การเริ่มได้ยินเสียงใดๆของมนุษย์จะขึ้นอยู่กับความสัมพันธ์
2 อย่าง คือ ระดับความเข้มเสียง(ความดัง)
และความถี่เสียงนั้น แสดงรายละเอียดในกราฟ
ที่มา:thegeniusphysics.blogspot.com
จากราฟ
เส้นด้านล่างแสดงขีดเริ่มของการเริ่มได้ยินเสียงของมนุษย์
จะเห็นว่าช่วงความถี่ต่ำ เช่นความถี่เสียง 100 Hz มนุษย์จะเริ่มได้ยินเสียงที่จะต้องมีระดับความเข้มเสียงถึง 40
dB แต่เสียงความถี่ช่วงกลางๆ
ช่วง 2,000 - 4,000 Hz จะเริ่มได้ยินเสียงตั้งแต่ระดับความเข้มเสียงน้อยกว่า 0
dB
กราฟเส้นบน
แสดงขีดเริ่มการเจ็บปวดของหู เช่น เสียงความถี่ 2,000
Hz เมื่อมีระดับความเข้มเสียงเท่ากับ 120 dB จะเริ่มปวดหู
2. ประโยชน์ของเสียง
นอกจากเราจะใช้เสียงในการสื่อสารระหว่างมนุษย์ด้วยกันและกับสัตว์อื่น ๆ
ยังมีการประยุกต์เอาเสียงไปใช้ในลักษณะต่างๆมากมาย เช่น
1. เสียงด้านวิศวกรรมและอุตสาหกรรม
วิศวกรใช้คลื่นเหนือเสียงในการตรวจสอบรอยร้าวหรือรอยตำหนิในโลหะ แก้วหรือ
เซรามิก โดยการส่งคลื่นเสียงที่มีความถี่ในช่วง 500 กิโลเฮิรตซ์ ถึง 15เมกะเฮิรตซ์ ผ่านเข้าไปในชิ้นงาน
ที่ต้องการตรวจสอบ แล้ววิเคราะห์ลักษณะของคลื่นสะท้อน หรือวิเคราะห์ลักษณะคลื่นที่รบกวนในคลื่นที่ผ่านออกไป
วิธีนี้นอกจากจะใช้ตรวจสอบชิ้นงานประเภทโลหะหล่อ หรือเซรามิกแล้ว
ยังถูกนำไปใช้ตรวจสอบยางรถยนต์ที่ผลิตใหม่ด้วย
เครื่องมือวัดความหนาของแผ่นโลหะ หรือวัสดุที่มีความแข็งอื่นๆ
สามารถทำได้โดย ใช้คลื่นเหนือเสียง แม้คลื่นจะไม่สามารถทะลุถึงอีกด้านหนึ่ง
ของผิวหน้าแผ่นโลหะนั้นได้ก็ตาม เช่น
การตรวจสอบความหนาของหม้อต้มน้ำความดันสูงสำหรับโรงงานอุตสาหกรรมเป็นต้น
คลื่นเหนือเสียงพลังงานสูงยังถูกนำไปใช้อย่างกว้างขวางในการทำความสะอาดผิวของเครื่องใช้ขนาดเล็ก
เช่น ชิ้นส่วนในนาฬิกาข้อมือและแว่นตา เป็นต้น
เพื่อให้อนุภาคสกปรกที่จับเกาะผิวสั่นด้วยพลังงานของคลื่นเหนือเสียง
เพราะความถี่ธรรมชาติของอนุภาคสกปรกตรงกันกับความถี่ธรรมชาติคลื่นเหนือเสียง
คลื่นจึงทำให้อนุภาคสกปรกเหล่านั้นหลุดจากผิวโลหะไปลอยปะปนไปในของเหลวที่โลหะแช่อยู่
2. ด้านการแพทย์
การใช้เสียงย่านความถี่อุลตราโซนิค(เกิน
20,000 Hz) ในการตรวจวินิจฉัยทางการแพทย์
โดยอาศัยหลักการส่งคลื่นเข้าไปกระทบกับอวัยวะภายใน
แล้อาศัยคุณสมบัติการสะท้อนของเสียงออกมา
แล้วไปแปลงสัณญาณด้วยความพิวเตอร์เป็นภาพให้เห็นได้ เช่น
การตรวจหาเนื้องอกในร่างกาย , ตรวจลักษณะความสมบูรณ์และเพศของทารกในครรภ์
การตรวจหัวใจด้วยคลื่นเสียงความถี่สูง(Echocardiography)
เป็นการตรวจหัวใจโดยใช้เครื่องมือที่มี
ประสิทธิภาพสูง ทำงานโดยอาศัยหลัก การส่งคลื่นเสียงความถี่สูงซึ่งส่งออก มาจาก
ผลึกแร่ชนิดพิเศษ และเมื่อรับสัญญานคลื่นเสียงที่ส่งออกไป นำมาแปรสัณญาน
เป็นภาพขึ้น จะทำให้สามารถเห็นการทำงาน ของหัวใจ ขณะกำลังบีบตัว และคลายตัว
และโดยการใช้เทคโนโลยีอันทันสมัย ทำให้ เราสามารถเห็น
การไหลเวียนของเลือดผ่านช่องหัวใจ ห้องต่างๆเป็นภาพสี และเห็นการทำงาน ปิด-เปิด
ของลิ้นหัวใจทั้งสี่ลิ้นได้
3. ด้านการประมงค์และสำรวจใต้น้ำ
รูปแสดงเรือใช้คลื่น Sonar สำรวจใต้ทะเล
ที่มา :topicstock.pantip.com
ส่งคลื่นเสียง
ลงไปใต้น้ำเพื่อการตรวจหาฝูงปลา
และสิ่งแปลกปลอมกีดขวางภายใต้ทะเลลึกและการวัดความลึกของท้องทะเลโดยใช้หลักการของการสะท้อนเสียง
ซึ่งเรียกกันว่า "ระบบโซนาร์"
หลักการทำงาน
คลื่นเสียงความถี่สูงจะถูกส่งผ่านออกจากหัวตรวจที่เราเรียกว่า transducer ส่งไปที่หัวใจ
ทำให้เกิดคลื่นเสียงสะท้อนกลับ เรียกว่า echo และระยะเวลา
ที่ใช้ในการเดินทางของคลื่นเสียงสะท้อนกลับ จะแปรเปลี่ยนตามระยะทางที่ใช้ซึ่งก็คือ
ระยะห่างของโครงสร้าง ต่างๆใน หัวใจ นั่นเอง
แล้วคอมพิวเตอร์ในเครื่องจะทำการประมวลผลแปลสัญญาณออกมาเป็นภาพ
ความถี่ที่ใช้ในการทำส่วนใหญ่จะอยู่ในช่วงประมาณ 2-10 MHz แต่ที่ใช้บ่อยที่สุดคือประมาณ 2.5-5MHz
ซึ่งจะเห็นว่าเป็นย่านความถี่สูงกว่าความถี่เสียงที่คนเราได้ยินคือ 2-18KHz
การใช้ความถี่ต่างกัน
จะมีผลต่อความละเอียดของภาพและความสามารถในการส่งผ่านทะลุเข้าไปในเนื้อเยื่อ
กล่าวคือ คลื่นความถี่ที่สูงกว่าจะให้ความละเอียดของภาพได้มากกว่า
แต่ความสามารถในการทะลุเข้าเนื้อเยื่อจะได้น้อยกว่า ยกตัวอย่างเช่น
ถ้าใช้คลื่นความถี่ 5MHz จะสามารถเห็นรายละเอียดของภาพได้ถึง
2 มิลลิเมตร ขณะที่คลื่นความถี่ 3MHz จะเห็นรายละเอียด
ของภาพ ได้ในระดับ 3มิลลิเมตร
แต่ขณะเดียวกันถ้าผู้ป่วยที่มีลักษณะอ้วนหรือตัวใหญ่ คลื่นที่มีความถี่สูงซึ่งทะลุเข้าเนี้อเยื่อได้น้อยกว่าคลื่นความถี่ต่ำกว่าก็อาจจะไม่สามารถมองเห็นภาพบางส่วนที่อยู่ลึกๆได้
ที่มา :http://thegeniusphysics.blogspot.com/p/10.html
ปรากฏการณ์ดอพเพลอร์ของเสียงและคลื่นกระแทก
1. ปรากฏการณ์ดอพเพลอร์ของเสียง ( Doppler Effect )
เมื่อแหล่งกำเนิดเสียงให้เสียงออกมา เสียงก็จะกระจายออกไปทุกทิศทางด้วยความยาวคลื่นที่เท่ากัน ถ้าแหล่งกำเนิดเสียงหยุดนิ่ง เราจะพบว่าเสียงที่ผู้ฟังได้ยินจะมีความยาวคลื่นเดียวกับที่แหล่งกำเนิดเสียงให้ออกมา
เมื่อแหล่งกำเนิดเสียงให้เสียงออกมา เสียงก็จะกระจายออกไปทุกทิศทางด้วยความยาวคลื่นที่เท่ากัน ถ้าแหล่งกำเนิดเสียงหยุดนิ่ง เราจะพบว่าเสียงที่ผู้ฟังได้ยินจะมีความยาวคลื่นเดียวกับที่แหล่งกำเนิดเสียงให้ออกมา
รูปแสดง
ความยาวคลื่นทุกด้านเท่ากัน เมื่อแหล่งกำเนิดคลื่นเสียงอยู่นิ่ง
ที่มา http://2.bp.blogspot.com/-8vTTiyCswhY/Tj5Vl_vPoiI.
ที่มา http://2.bp.blogspot.com/-8vTTiyCswhY/Tj5Vl_vPoiI.
รูปแสดงความยาวคลื่นด้านหน้าและด้านหลังไม่เท่ากัน
เมื่อแหล่งกำเนิดสียงเคลื่อนที่
ที่มา thegeniusphysics.blogspot.com
ที่มา thegeniusphysics.blogspot.com
แต่ถ้าผู้ฟังหรือแหล่งกำเนิดเสียงเคลื่อนที่ ความยาวคลื่นที่ออกไปด้านหน้าของแหล่งกำเนิดเสียงจะสั้นลง
ส่วนความยาวคลื่นด้านหลังของแหล่งกำเนิดเสียงซึ่งเคลื่อนที่ผ่านไป
จะมีความยาวคลื่นยาวมากขึ้น
ปรากฏการณ์นี้ เราจะได้ยินเสียงความถี่ผิดไปจากที่แหล่งกำเนิดให้ออกมา(ทั้ง ๆ ที่แหล่งกำเนิดเสียงให้เสียงความถี่เท่าเดิม) เราเรียกว่าเกิดปรากฏการดอปเปลอร์
ปรากฏการณ์นี้ เราจะได้ยินเสียงความถี่ผิดไปจากที่แหล่งกำเนิดให้ออกมา(ทั้ง ๆ ที่แหล่งกำเนิดเสียงให้เสียงความถี่เท่าเดิม) เราเรียกว่าเกิดปรากฏการดอปเปลอร์
ที่มา www.scimath.org
ภาพเคลื่อนไหวแสดงแหล่งกำเนิดเสียงเคลื่นที่ไปทางขวา
ความยาวคลื่นด้านหน้าสั้นกว่าด้านหลัง
ปรากฎการณ์ดอปเปลอร์เกิดจากการเคลื่อนที่สัมพัทธ์ ระหว่างแหล่งกำเนิดเสียงหรือผู้ฟัง ทำให้ผู้ฟังได้ยินเสียงที่มีความถี่ไม่เท่ากับความถี่เสียงที่แหล่งกำเนิดเสียงให้ออกมา
ปรากฏการณ์ดอปเพลอร์ทั้งหมดที่เกิดขึ้นนี้เราสามารถแบ่งได้เป็น5กรณี คือ
1. กรณีแหล่งกำเนิดเคลื่อนที่เข้าหาผู้สังเกตที่หยุดนิ่ง ในกรณีนี้ความถี่เสียงที่ปรากฏแก่ผู้สังเกตที่หยุดนิ่งจะได้ยินเสียงมีความถี่สูงขึ้นกว่าความถี่เสียงปกติของแหล่งกำเนิดเสียง และความยาวคลื่นสั้นลง
2. กรณีแหล่งกำเนิดเสียงเคลื่อนที่ออกจากผู้สังเกตที่หยุดนิ่ง ในกรณีนี้ความถี่เสียงที่ผู้สังเกตได้รับจะมีความถี่ต่ำลงกว่าเดิม แต่ความยาวคลื่นจะยาวขึ้น
3. กรณีผู้สังเกตเคลื่อนที่เข้าหาแหล่งกำเนิดเสียงที่หยุดนิ่ง ในกรณีนี้ความถี่เสียงที่ผู้สังเกตได้รับจะสูงกว่าเดิม
4. กรณีผู้สังเกตเคลื่อนที่ออกจากแหล่งกำเนิดเสียงที่หยุดนิ่ง ในกรณีนี้ความถี่เสียงที่ผู้สังเกตได้รับจะต่ำลงกว่าเดิม แต่ความยาวคลื่นเสียงเท่าเดิม5. กรณีแหล่งกำเนิดและผู้สังเกตต่างเคลื่อนที่ ซึ่งอาจแบ่งได้เป็น ต่างเคลื่อนที่เข้าหากัน หรือเคลื่อนที่แยกออกจากกัน หรือเคลื่อนที่ตามกัน สังเกตจากถ้าเวลาผ่านไปแล้วแหล่งกำเนิดเสียงกับผู้สังเกตมีระยะห่างกันน้อยลง แสดงว่าผู้ฟังจะได้ยินเสียงมีความถี่สูงขึ้น ส่วนเมื่อเวลาผ่านไประยะห่างระหว่างแหล่งกำเนิดเสียงกับผู้สังเกต มีระยะห่างกันมากขึ้น แสดงว่าผู้ฟังได้ยินเสียงมีความถี่เสียงต่ำลง
การเกิดดอปเพลอร์ของเสียง
ผู้ฟังได้ยินเสียงมีความถี่ต่างจากความถี่เสียงจริง
ที่มา http://thegeniusphysics.blogspot.com/p/9.html
การคำนวณเกี่ยวกับปรากฏการณ์ดอปเพลอร์ของเสียง มีอยู่ 2 แบบ
1. การหาความยาวคลื่นเสียงด้านหน้า และด้านหลังแหล่งกำเนิดสียง
1.1 ถ้าแหล่งกำเนิดเสียงอยู่นิ่ง ความยาวคลื่นทุกด้านเท่ากัน หาความยาวคลื่นเสียงตามปกติ
1.1 ถ้าแหล่งกำเนิดเสียงอยู่นิ่ง ความยาวคลื่นทุกด้านเท่ากัน หาความยาวคลื่นเสียงตามปกติ
1.2 หาความยาวคลื่นที่ปรากฏด้านหน้าแหล่งกำเนิดเสียงที่กำลังเคลื่อนที่
จะได้ความยาวคลื่นสั้นลง
1.3 หาความยาวคลื่นที่ปรากฏด้านหลังแหล่งกำเนิดเสียงที่กำลังเคลื่อนที่
จะได้ความยาวคลื่นมากขึ้น
หมายเหตุ จากสมการ
ความยาวคลื่นด้านหน้าและด้านหลังแหล่งกำเนิดเสียงที่กำลังเคลื่อนที่
ไม่เกี่ยวข้องกับผู้สังเกตซึ่งอยู่ด้านหน้าและหลังแหล่งกำเนิดเลย
ไม่ว่าผู้สังเกตจะอยู่นิ่งหรือเคลื่อนที่อย่างไรก็ตาม
2. หาความถี่เสียงปรากฏต่อผู้ฟัง ขณะเกิดปรากฏการณ์ดอปเพลอร์ของเสียง
จากการศึกษาที่ผ่านมาสรุปว่า
การที่ผู้สังเกตจะได้ยินเสียงที่ปรากฏว่ามีความถี่เสียงสูงขึ้น
หรือต่ำลงกว่าปกตินั้น ให้สังเกตว่า ถ้าเกิดการเคลื่อนที่ของแหล่งกำเนิดและผู้สังเกต
สัมพัทธ์แบบทำให้ระยะห่างระหว่างกันลดลงเรื่อยๆ เป็นลักษณะการเข้าหา
ผู้สังเกตุจะได้ยินเสียงที่มีความถี่สูงกว่าปกติ ส่วนในทางตรงกันข้าม
เกิดการสัมพัทธ์ที่ระยะห่างระหว่างผู้ฟังกับแหล่งกำเนิดเสียงเพิ่มมากขึ้น
เป็นลักษณะการออกจากกัน ผู้สังเกตุจะได้ยินเสียงที่มีความถี่ต่ำกว่าปกติ
สมการคำนวณคือ
ที่มา http://thegeniusphysics.blogspot.com
2. คลื่นกระแทก ( shock wave )
คลื่นกระแทก คือ
ปรากฏการณ์ที่หน้าคลื่นเคลื่อนที่มาเสริมกันในลักษณะที่เป็นหน้าคลื่นวงกลมซ้อนเรียงกันไป
โดยที่มีแนวหน้าคลื่นที่มาเสริมกันมีลักษณะเป็นรูปตัวVอันเนื่องมาจากแหล่งกำเนิดคลื่นเคลื่อนที่ด้วยความเร็วที่มากกว่าความเร็วของคลื่นในตัวกลาง( Vs>V )
เช่น คลื่นกระแทกของคลื่นที่ผิวน้ำขณะที่เรือกำลังวิ่ง
หรือคลื่นเสียงก็เกิดขึ้นเมื่อเครื่องบินบินเร็วกว่าอัตราเร็วของเสียงในอากาศ
รูปแสดงคลื่นกระแทกที่เกิดจากเรือมีความเร็วมากกว่าความเร็วคลื่นน้ำ
ที่มา http://4.bp.blogspot.com/-JMejuq_gW4A/Tj_RXqRCwhI.
รูปแสดงคลื่นกระแทกที่เกิดขึ้นเมื่อเครื่องบินมีความเร็วมากกว่าความเร็วเสียง
ที่มา http://www.sa.ac.th/winyoo/Sound/sound_shock.htm
ที่มา http://www.sa.ac.th/winyoo/Sound/sound_shock.htm
ภาพ (1)
ภาพ(2)
ภาพ(3)
ที่มา http://thegeniusphysics.blogspot.com/p/9.html
ภาพ (1) แสดง แหล่งกำเนิดคลื่น
เคลื่อนที่ด้วยอัตราเร็วต่ำกว่าอัตราเร็วเสียง เกิดดอปเพลอร์ (Vs<
V )
ภาพ (2) แสดง แหล่งกำเนิดคลื่นเคลื่อนที่เท่ากับอัตราเร็วเสียง
เกิดการชนกำแพงเสียง ( Vs=V )
ภาพ (3) แสดง แหล่งกำเนิดคลื่นเคลื่อนที่เร็วกว่าเสียง(super
sonic) เกิดคลื่นกระแทก ( Vs>V)
ที่มา http://thegeniusphysics.blogspot.com/p/9.html
ถ้าอัตราเร็วของเครื่องบินมากกว่ามากกว่าอัตราเร็วเสียงในอากาศมากๆ
จนกระทั่งทำให้รูปกรวยยิ่งเล็กลงมากๆ แล้วทำให้เกิดการเปลี่ยนแปลงความดันอย่างมาก
และรวดเร็วเป็นผลทำให้เกิดเสียงดังคล้ายเสียงระเบิดบริเวณคลื่นกระแทกนี้เคลื่อนที่ผ่าน อาจทำให้กระจกหน้าต่างแตกได้
เสียงที่เกิดขึ้นนี้เรียกว่า"ซอนิกบูม ( Sonic
Boom )"
เลขมัค( Mach Number )
เลขมัค คือ ตัวเลขที่บอกให้เราทราบว่า
อัตราเร็วของแหล่งกำเนิดคลื่น มีค่าเป็นกี่เท่าของอัตราเร็วของคลื่นในตัวกลาง
เช่น เครื่องบินไอพ่นบินด้วยความเร็ว 2 มัค
หมายความว่าเครื่องบินกำลังบินด้วยความเร็ว 2 เท่าของความเร็วเสียงในอากาศ
เลขมัคถูกเขียนแทนด้วยสัญลักษณ์ " Ma "
ที่มา http://thegeniusphysics.blogspot.com/p/9.html
สรุป
ปรากฏการณ์ดอปเพลอร์ของเสียงและคลื่นกระแทกของเสียง
เป็นปรากฏการณ์เกิดขึ้นต่อเนื่องกันคือเมื่อแหล่งกำเนิดเสียงเคลื่อนที่ช้ากว่าความเร็วเสียง
(Vs < V) เกิดปรากฏการณ์ดอปเพลอร์ แต่เมื่อแหล่งกำเนิดเสียงมีความเร็วมากกว่าความเร็วเสียง(
Vs > V ) เกิดคลื่นกระแทก
ที่มา :http://thegeniusphysics.blogspot.com/p/9.html
การสั่นพ้องของเสียง
1. ความถี่ธรรมชาติ(natural frequency)
วัตถุหรืออนุภาค จะมีความถี่ในการสั่นตามธรรมชาติเฉพาะตัวคงที่อยู่ค่าหนึ่ง จากที่นักเรียนเคยเรียนมาแล้วในเรื่องความถี่ของซิมเปิลฮาร์มอนิก เช่นลูกตุ้มที่แขวนด้วยเชือกยาว L อยู่ในบริเวณที่มีความเร่งจากความโน้มถ่วง g จะมีความถี่ตามธรรมชาติเท่ากับ
วัตถุหรืออนุภาค จะมีความถี่ในการสั่นตามธรรมชาติเฉพาะตัวคงที่อยู่ค่าหนึ่ง จากที่นักเรียนเคยเรียนมาแล้วในเรื่องความถี่ของซิมเปิลฮาร์มอนิก เช่นลูกตุ้มที่แขวนด้วยเชือกยาว L อยู่ในบริเวณที่มีความเร่งจากความโน้มถ่วง g จะมีความถี่ตามธรรมชาติเท่ากับ
รูปการสั่นของมวลติดสปริงด้วยความถี่ธรรมชาติ
ที่มา http://nkw04931.wordpress.com/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B1%E0%B9%88%E0%B8%99%E0%B8%9E%E0%B9%89%E0%B8%AD%E0%B8%87%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%80%E0%B8%AA%E0%B8%B5%E0%B8%A2%E0%B8%87/
ที่มา http://nkw04931.wordpress.com/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B1%E0%B9%88%E0%B8%99%E0%B8%9E%E0%B9%89%E0%B8%AD%E0%B8%87%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%80%E0%B8%AA%E0%B8%B5%E0%B8%A2%E0%B8%87/
มวล m ติดสปริงอันหนึ่ง:ซึ่งมีค่าคงที่สปริง
k เมื่อถูกกระตุ้นให้สั่นก็จะมีความถี่ธรรมชาติ
ซึ่งหาค่าความถี่ได้จากสมการ
รูปการสั่นของมวลติดสริงด้วยความถี่ธรรมชาติ
ที่มา http://thegeniusphysics.blogspot.com/p/6.html
นอกจากลูกตุ้มแล้ววัตถุต่างๆ เช่นสะพานแขวน ชิงช้า
สายไปที่โยงอยู่บนเสาไฟฟ้า แม้แต่ตึกสูง สิ่งเหล่านี้ก็มีความถี่ธรรมชาติ
สามารถที่สั่นไหวหรือแกว่งได้ด้วยค่าความถี่เฉพาะตัวค่าหนึ่ง
2. การสั่นพ้อง(resonance)
เป็นปรากฏการณ์ที่มีแรงไปกระทำให้วัตถุสั่นหรือแกว่ง โดยความถี่ของแรงกระทำ(ความถี่กระตุ้น)ไปเท่ากับความถี่ธรรมชาติของวัตถุ จะทำให้วัตถุนั้นสั่นด้วยแอมปลิจูดที่มากที่สุด สำหรับการสั่นพ้องของเสียง ทำให้เกิดได้โดยส่งเสียงจากแหล่งกำเนิดเสียงทำหน้าที่เป็นความถี่กระตุ้นเข้าไปตรงกับความถี่ธรรมชาติของโมเลกุลอากาศในท่อเรโซแนนซ์ จะทำให้อากาศในท่อเกิดการสั่นอย่างรุนแรง(แอมปลิจูดมาก) เกิดการสั่นพ้องของลำอากาศภายในท่อเรโซแนนซ์ ทำให้เกิดเสียงดังมากจากผลของการสั่นพ้องนั้น ซึ่งมีรายละเอียดของการสั่นพ้องดังนี้
ชนิดของท่อที่ใช้ทดลองการสั่นพ้องของเสียงมี 2 ชนิด คือ ท่อปลายเปิด 1 ด้าน ปิด 1 ด้านและท่อชนิดปลายเปิดทั้งสองด้าน
2.1 การสั่นพ้องในท่อปลายเปิด 1 ด้าน
ปิด 1 ด้าน
(ก) เมื่อส่งเสียงด้วยความถี่คงที่ แล้วปรับความยาวลำอากาศในท่อเพื่อให้เกิดการสั่นพ้อง
การสั่นพ้องครั้งที่ 1 เกิดเมื่อค่อยๆเลื่อนลูกสูบปรับลำอากาศในท่อให้ยาวขึ้นเรื่อยๆ
จนกว่าจะได้ยินเสียงดังมากขึ้น(ขณะนั้นเกิดการสั่นพ้องของเสียงในท่อ)
วัดความยาวลำอากาศจากปากท่อถึงตำแหน่งนี้ เรียกว่าความยาวลำอากาศ L1 ซึ่งมีความยาวน้อยที่สุดที่สั่นพ้องกับเสียงนี้ได้
หาความยาวนี้ได้จากการเขียนรูปคลื่นนิ่งของการสั่นพ้องในท่อ
โดยมีเงื่อนไขว่าสั่นพ้องครั้งแรกรูปคลื่นนี่งมีขนาดสั้นที่สุด
โดยที่ปากเปิดของท่อต้องเป็นปฏิบัพของคลื่นนิ่ง
และที่ปลายปิดของท่อเป็นตำแหน่งบัพของคลื่นนิ่ง จึงเขียนได้ ดังรูป
ที่มา http://nkw04931.wordpress.com/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B1%E0%B9%88%E0%B8%99%E0%B8%9E%E0%B9%89%E0%B8%AD%E0%B8%87%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%80%E0%B8%AA%E0%B8%B5%E0%B8%A2%E0%B8%87/
สรุป ความยาวของลำอากาศที่ทำให้เกิดการสั่นพ้องในท่อปลายปิด
1 ด้าน ครั้งที่ n หาได้จากสมการ
จากรูป ถ้าความยาวท่อเรโซแนนซ์ปลายปิด 1 ด้านสั้นที่สุดในการสั่นพ้องกับความถี่เสียงคงที่
ครั้งที่ 1 ยาวเท่ากับ L1 ความยาวท่อในการสั่นพ้องครั้งที่ 2 ยาวเท่ากับ
3 L1 ความยาวท่อในการสั่นพ้องครั้งที่ 3
ยาวเท่ากับ 5 L1 จะเห็นว่าความยาวท่อสำหรับการสั่นพ้องจะเป็นจำนวนเท่า(เลขคี่)
ของความยาวท่อสั้นที่สุด
จะเห็นว่าความยาวท่อส่วนที่เปลี่ยนแปลงไปของการสั่นพ้องครั้งถัดกันไป
เช่นครั้งที่ 1 กับครั้งที่
2 หรือครั้งที่ 2 กับครั้งที่ 3
จะมีระยะต่างกันอยู่ 1 loop หรือเท่ากับครึ่งหนึ่งของความยาวคลื่นเสียง
(ข) เมื่อให้ความยาวท่อยาวคงที่ แล้วเปลี่ยนความถี่เสียง ที่ส่งเข้าไปในท่อเพื่อให้เกิดการสั่นพ้อง
ในกรณีนี้จะเริ่มจากการส่งเสียงที่มีความถี่ต่ำแล้วค่อยๆเพิ่มความถี่เสียงจนเกิดการสั่นพ้อง จะเห็นว่าถ้าอัตราเร็วเสียง v
ในท่อมีค่าคงที่ ในการเปลี่ยนความถี่เสียงจะทำให้ความยาวคลื่นเสียงเปลี่ยนไปด้วยจากการทดลองหาความยาวคลื่นเสียงในการสั่นพ้องครั้งที่
1 แล้วนำไปหาค่าความถี่เสียง f1 ซึ่งเป็นความถี่เสียงต่ำสุด(ความถี่มูลฐาน)
มีรายละเอียดดังนี้
ที่มา http://nkw04931.wordpress.com/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B1%E0%B9%88%E0%B8%99%E0%B8%9E%E0%B9%89%E0%B8%AD%E0%B8%87%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%80%E0%B8%AA%E0%B8%B5%E0%B8%A2%E0%B8%87/
สรุป ความถี่เสียงที่ทำให้เกิดการสั่นพ้องในท่อปลายปิด
1 ด้าน ครั้งที่ n หาได้
จากสมการ
จากรูป ถ้าความยาวท่อเรโซแนนซ์ปลายปิด 1 ด้านคงที่ ความถี่เสียงที่ทำให้เกิดการสั่นพ้อง
ครั้งที่ 1เป็นความถี่เสียงต่ำสุดเท่ากับ
f1 เรียกว่าเสียงฮาร์มอนิกที่1 , ความถี่เสียงสั่นพ้องครั้งที่ 2
เท่ากับ 3f1 เรียกว่าเสียงฮาร์มอนิกที่ 3 ความถี่เสียงในการสั่นพ้องครั้งที่ 3 เท่ากับ 5 f1 เรียกว่าเสียงฮาร์มอนิกที่
5 จะเห็นว่าความถี่เสียงสำหรับการสั่นพ้องจะเป็นจำนวนเท่า(เลขคี่)
ของความถี่เสียงในการสั่นพ้องครั้งแรก(ความถี่มูลฐาน)
2.2 การสั่นพ้องในท่อปลายเปิด 2 ด้าน
(ก) เมื่อส่งเสียงด้วยความถี่คงที่ แล้วปรับความยาวลำอากาศในท่อเพื่อให้เกิดการสั่นพ้อง
การสั่นพ้องครั้งที่ 1 เกิดเมื่อค่อยๆเลื่อนลูกสูบปรับลำอากาศในท่อให้ยาวขึ้นเรื่อยๆ
จนกว่าจะได้ยินเสียงดังมากขึ้น(ขณะนั้นเกิดการสั่นพ้องของเสียงในท่อ)
วัดความยาวลำอากาศจากปากท่อถึงตำแหน่งนี้ เรียกว่าความยาวลำอากาศ L1 ซึ่งมีความยาวน้อยที่สุดที่สั่นพ้องกับเสียงนี้ได้
หาความยาวนี้ได้จากการเขียนรูปคลื่นนิ่งของการสั่นพ้องในท่อ
โดยมีเงื่อนไขว่าสั่นพ้องครั้งแรกรูปคลื่นนี่งมีขนาดสั้นที่สุด
โดยที่ปากเปิดของท่อต้องเป็นปฏิบัพของคลื่นนิ่ง จึงเขียนได้
ดังรูป
ที่มา http://nkw04931.wordpress.com/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B1%E0%B9%88%E0%B8%99%E0%B8%9E%E0%B9%89%E0%B8%AD%E0%B8%87%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%80%E0%B8%AA%E0%B8%B5%E0%B8%A2%E0%B8%87/
สรุป
ความยาวของลำอากาศที่ทำให้เกิดการสั่นพ้องในท่อปลายเปิด 2
ด้าน ครั้งที่ n หาได้จากสมการ
จากรูป ถ้าความยาวท่อเรโซแนนซ์ปลายเปิด 2 ด้านสั้นที่สุดในการสั่นพ้องกับความถี่เสียงคงที่
ครั้งที่ 1 ยาวเท่ากับ L1 ความยาวท่อในการสั่นพ้องครั้งที่ 2 ยาวเท่ากับ 2
L1 ความยาวท่อในการสั่นพ้องครั้งที่ 3
ยาวเท่ากับ 3 L1 จะเห็นว่าความยาวท่อสำหรับการสั่นพ้องจะเป็นจำนวนเต็มเท่า
ของความยาวท่อสั้นที่สุด
จะเห็นว่าความยาวท่อส่วนที่เปลี่ยนแปลงไปของการสั่นพ้องครั้งถัดกันไป
เช่นครั้งที่ 1 กับครั้งที่
2 หรือครั้งที่ 2 กับครั้งที่ 3
จะมีระยะต่างกันอยู่ 1 loop หรือเท่ากับครึ่งหนึ่งของความยาวคลื่นเสียง
(ข) เมื่อให้ความยาวท่อยาวคงที่ แล้วเปลี่ยนความถี่เสียง ที่ส่งเข้าไปในท่อเพื่อให้เกิดการสั่นพ้อง
ในกรณีนี้จะเริ่มจากการส่งเสียงที่มีความถี่ต่ำแล้วค่อยๆเพิ่มความถี่เสียงจนเกิดการสั่นพ้อง จะเห็นว่าถ้าอัตราเร็วเสียง v
ในท่อมีค่าคงที่ ในการเปลี่ยนความถี่เสียงจะทำให้ความยาวคลื่นเสียงเปลี่ยนไปด้วยจากการทดลองหาความยาวคลื่นเสียงในการสั่นพ้องครั้งที่
1 แล้วนำไปหาค่าความถี่เสียง f1 ซึ่งเป็นความถี่เสียงต่ำสุด(ความถี่มูลฐาน)
มีรายละเอียดดังนี้
ที่มา http://nkw04931.wordpress.com/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B8%AA%E0%B8%B1%E0%B9%88%E0%B8%99%E0%B8%9E%E0%B9%89%E0%B8%AD%E0%B8%87%E0%B8%82%E0%B8%AD%E0%B8%87%E0%B9%80%E0%B8%AA%E0%B8%B5%E0%B8%A2%E0%B8%87/
สรุป
ความถี่เสียงที่ทำให้เกิดการสั่นพ้องในท่อปลายเปิด 2 ด้าน ครั้งที่ n หาได้ จากสมการ
จากรูป ถ้าความยาวท่อเรโซแนนซ์ปลายเปิด 2 ด้านคงที่ ความถี่เสียงที่ทำให้เกิดการสั่นพ้อง ครั้งที่ 1เป็นความถี่เสียงต่ำสุดเท่ากับ
f1 เรียกว่าเสียงฮาร์มอนิกที่1 , ความถี่เสียงสั่นพ้องครั้งที่ 2
เท่ากับ 2f1 เรียกว่าเสียงฮาร์มอนิกที่ 2 ความถี่เสียงในการสั่นพ้องครั้งที่ 3 เท่ากับ 3 f1 เรียกว่าเสียงฮาร์มอนิกที่ 3 จะเห็นว่าความถี่เสียงสำหรับการสั่นพ้องจะเป็นจำนวนเต็มเท่า
ของความถี่เสียงในการสั่นพ้องครั้งแรก(ความถี่มูลฐาน)
การสั่นพ้องที่เกิดขึ้นในธรรมชาติ
อาจทำให้เกิดความเสียหายร้ายแรง
เช่นเหตุการณ์ที่เกิดการสั่นพ้องของสะพานแขวนในประเทศสหรัฐอเมริกา ทำให้วิศวกรในยุคต่อมาต้องให้ความสำคัญกับการสั่นพ้องของวัตถุซึ่งเป็นสิ่งก่อสร้างต่างๆ
เพื่อจะไม่ให้เกิดการสูญเสียซึ่งปรากฏในวีดีโอต่อไปนี้
ที่มา :http://thegeniusphysics.blogspot.com/p/6.html
สมัครสมาชิก:
บทความ (Atom)